
Week 8 - Wednesday



 What did we talk about last time?
 AVL trees
 Balancing trees by construction
 Hash tables











 Determine if a string has any duplicate characters
 Weak!
 Okay, but do it in O(m) time where m is the length of the 

string





 We want a function that will map data to buckets in our hash 
table

 Important characteristics:
 Efficient: It must be quick to execute
 Deterministic: The same data must always map to the same bucket
 Uniform: Data should be mapped evenly across all buckets



 We want a function h(k) that computes a hash for every key k
 The simplest way of guaranteeing that we hash only into legal 

locations is by setting h(k) to be:
 h(k) = k mod N where N is the size of the hash table
 To avoid crowding the low indexes, N should be prime
 If it is not feasible for N to be prime, we can add another step 

using a prime p > N:
 h(k) = (k mod p) mod N



 Pros
 Simple
 Fast
 Easy to do
 Good if you know nothing about the data

 Cons
 Prime numbers are involved (What's the nearest prime to the size you 

want?)
 Uses no information about the data
 If the data is strangely structured (multiples of p, for example) it could all 

hash to the same location



 Break the key into parts and combine those parts
 Shift folding puts the parts together without transformations
 SSN: 123-45-6789 is broken up and summed 123 + 456 + 789 = 1,368, 

then modded by N, probably
 Boundary folding puts the parts together reversing every 

other part of the key
 SSN: 123-45-6789 is broken up and summed 123 + 654 + 789 = 1,566, 

then modded by N, probably



 Pros
 Relatively Simple and Fast
 Mixes up the data more than division
 Points out a way to turn strings or other non-integer data into an 

integer that can be hashed
 Transforms the numbers so that patterns in the data are likely to be 

removed
 Cons
 Primes are still involved
 Uses no special information about the data



 Square the key, then take the "middle" numbers out of the 
result

 Example: key = 3,121 then 3,1212 = 9,740,641 and the hash 
value is 406

 One nice thing about this method is that we can make the 
table size be a power of 2

 Then, we can take the log2 N middle bits out of the squared 
value using bitwise shifts and masking



 Pros
 Randomizes the data a lot
 Fast when implemented correctly
 Primes are not necessary

 Cons
 Uses no special information about the data



 Remove part of the key, especially if it is useless
 Example: 
 Many SSN numbers for Indianapolis residents begin with 313
 Removing the first 3 digits will, therefore, not reduce the 

randomness very much, provided that you are looking at a list of 
SSNs for Indianapolis residents



 Pros
 Uses information about the key
 Can be efficient and easy to implement

 Cons
 Requires special knowledge
 Careless extraction of digits can give poor hashing performance



 Change the number to a different base
 Then, treat the base as if it were still base 10 and use the 

division method
 Example: 345 is 423 in base 9
 If N = 100, we could take the mod and put 345 in location 23



 Pros
 If many numbers have similar final digits or values mod N (or p), they 

can be randomized by this method
 Cons
 Choice of base can be difficult
 Effects are unpredictable
 Not as quick as many of the other methods
 Values that didn't collide before might now collide





 What happens when you go to put a value in a bucket and one is 
already there?

 There are a couple basic strategies:
 Open addressing
 Chaining

 Load factor is the number of items divided by the number of 
buckets
 0 is an empty hash table
 0.5 is a half full hash table
 1 is a completely full hash table



 With open addressing, we look for some empty spot in the 
hash table to put the item

 There are a few common strategies
 Linear probing
 Quadratic probing
 Double hashing



 With linear probing, you add a step size until you reach an 
empty location or visit the entire hash table

 Let h(k) be the initial hash function
 h(k,i) = h(k) + ci, for i = 0, 1, 2, 3… 

 Example: Add 6 with a step size of 5

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12

104 3 19 7 6 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 For quadratic probing, use a quadratic function to try new 
locations:

 h(k,i) = h(k) + c1i + c2i2, for i = 0, 1, 2, 3… 

 Example: Add 6 with c1 = 0 and c2 = 1

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12

104 3 19 7 6 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 For double hashing, do linear probing, but with a step size 
dependent on the data:

 h(k,i) = h1(k) + i∙h2(k), for i = 0, 1, 2, 3… 

 Example: Add 6 with h2(k) = (k mod 7) + 1

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12

104 6 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 Open addressing schemes are fast and relatively simple
 Linear and quadratic probing can have clustering problems
 One collision means more are likely to happen

 Double hashing has poor data locality
 It is impossible to have more items than there are buckets
 Performance degrades seriously with load factors over 0.7



 Make each hash table entry a linked list
 If you want to insert something at a location, simply insert it 

into the linked list
 This is the most common kind of hash table
 Chaining can behave well even if the load factor is greater 

than 1
 Chaining is sensitive to bad hash functions
 No advantage if every item is hashed to the same location



 Deletion can be a huge problem
 Easy for chaining
 Highly non-trivial for open addressing
 Consider our linear probing example with a step size of 5

 Delete 19
 Now see if 6 exists

104 3 19 7 6 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 If you know all the values you are going to see ahead of time, 
it is possible to create a minimal perfect hash function

 A minimal perfect hash function will hash every value without 
collisions and fill your hash table

 Cichelli’s method and the FHCD algorithm are two ways to do 
it

 Both are complex
 Look them up if you find yourself in this situation





 We can define a symbol table ADT with a few essential operations:
 put(Key key, Value value)

▪ Put the key-value pair into the table
 get(Key key):

▪ Retrieve the value associated with key
 delete(Key key)

▪ Remove the value associated with key
 contains(Key key)

▪ See if the table contains a key
 isEmpty()
 size()

 It's also useful to be able to iterate over all keys



public class HashTable {
private int size = 0;
private int power = 10;
private Node[] table = new Node[1 << power];

private static class Node {
public int key;
public Object value;
public Node next;

}
…

}



 Get the number of elements stored in the hash table

 Say whether or not the hash table is empty

public boolean isEmpty()

public int size()



 It's useful to have a function that finds the appropriate hash 
value

 Take the input integer and swap the low order 16 bits and the 
high order 16 bits (in case the number is small)

 Square the number
 Use shifting to get the middle power bits

private int hash(int key)





 Finish implementing hash tables
 Map in the JCF
 HashMap
 TreeMap

 Introduction to graphs



 Start Project 3
 Form teams!

 Start Assignment 4
 Keep reading 3.4
 Read 4.1


	COMP 2100
	Last time
	Questions?
	Project 3
	Assignment 4
	Hash Tables
	Example
	Hash Functions
	What are we looking for?
	Division
	Division Pros and Cons
	Folding
	Folding Pros and Cons
	Mid-Square Function
	Mid-Square Pros and Cons
	Extraction
	Extraction Pros and Cons
	Radix Transformation
	Radix Transformation Pros and Cons
	Collisions
	The real problem with hash tables
	Open addressing
	Linear probing
	Quadratic probing
	Double hashing
	Open addressing pros and cons
	Chaining
	Deletion
	Perfect Hash Functions
	Hash Table Implementation
	Recall: Symbol table ADT
	Chaining hash table
	Easy methods
	Hashing function
	Upcoming
	Next time…
	Reminders

