
Week 8 - Wednesday



 What did we talk about last time?
 AVL trees
 Balancing trees by construction
 Hash tables











 Determine if a string has any duplicate characters
 Weak!
 Okay, but do it in O(m) time where m is the length of the 

string





 We want a function that will map data to buckets in our hash 
table

 Important characteristics:
 Efficient: It must be quick to execute
 Deterministic: The same data must always map to the same bucket
 Uniform: Data should be mapped evenly across all buckets



 We want a function h(k) that computes a hash for every key k
 The simplest way of guaranteeing that we hash only into legal 

locations is by setting h(k) to be:
 h(k) = k mod N where N is the size of the hash table
 To avoid crowding the low indexes, N should be prime
 If it is not feasible for N to be prime, we can add another step 

using a prime p > N:
 h(k) = (k mod p) mod N



 Pros
 Simple
 Fast
 Easy to do
 Good if you know nothing about the data

 Cons
 Prime numbers are involved (What's the nearest prime to the size you 

want?)
 Uses no information about the data
 If the data is strangely structured (multiples of p, for example) it could all 

hash to the same location



 Break the key into parts and combine those parts
 Shift folding puts the parts together without transformations
 SSN: 123-45-6789 is broken up and summed 123 + 456 + 789 = 1,368, 

then modded by N, probably
 Boundary folding puts the parts together reversing every 

other part of the key
 SSN: 123-45-6789 is broken up and summed 123 + 654 + 789 = 1,566, 

then modded by N, probably



 Pros
 Relatively Simple and Fast
 Mixes up the data more than division
 Points out a way to turn strings or other non-integer data into an 

integer that can be hashed
 Transforms the numbers so that patterns in the data are likely to be 

removed
 Cons
 Primes are still involved
 Uses no special information about the data



 Square the key, then take the "middle" numbers out of the 
result

 Example: key = 3,121 then 3,1212 = 9,740,641 and the hash 
value is 406

 One nice thing about this method is that we can make the 
table size be a power of 2

 Then, we can take the log2 N middle bits out of the squared 
value using bitwise shifts and masking



 Pros
 Randomizes the data a lot
 Fast when implemented correctly
 Primes are not necessary

 Cons
 Uses no special information about the data



 Remove part of the key, especially if it is useless
 Example: 
 Many SSN numbers for Indianapolis residents begin with 313
 Removing the first 3 digits will, therefore, not reduce the 

randomness very much, provided that you are looking at a list of 
SSNs for Indianapolis residents



 Pros
 Uses information about the key
 Can be efficient and easy to implement

 Cons
 Requires special knowledge
 Careless extraction of digits can give poor hashing performance



 Change the number to a different base
 Then, treat the base as if it were still base 10 and use the 

division method
 Example: 345 is 423 in base 9
 If N = 100, we could take the mod and put 345 in location 23



 Pros
 If many numbers have similar final digits or values mod N (or p), they 

can be randomized by this method
 Cons
 Choice of base can be difficult
 Effects are unpredictable
 Not as quick as many of the other methods
 Values that didn't collide before might now collide





 What happens when you go to put a value in a bucket and one is 
already there?

 There are a couple basic strategies:
 Open addressing
 Chaining

 Load factor is the number of items divided by the number of 
buckets
 0 is an empty hash table
 0.5 is a half full hash table
 1 is a completely full hash table



 With open addressing, we look for some empty spot in the 
hash table to put the item

 There are a few common strategies
 Linear probing
 Quadratic probing
 Double hashing



 With linear probing, you add a step size until you reach an 
empty location or visit the entire hash table

 Let h(k) be the initial hash function
 h(k,i) = h(k) + ci, for i = 0, 1, 2, 3… 

 Example: Add 6 with a step size of 5

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12

104 3 19 7 6 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 For quadratic probing, use a quadratic function to try new 
locations:

 h(k,i) = h(k) + c1i + c2i2, for i = 0, 1, 2, 3… 

 Example: Add 6 with c1 = 0 and c2 = 1

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12

104 3 19 7 6 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 For double hashing, do linear probing, but with a step size 
dependent on the data:

 h(k,i) = h1(k) + i∙h2(k), for i = 0, 1, 2, 3… 

 Example: Add 6 with h2(k) = (k mod 7) + 1

104 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12

104 6 3 19 7 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 Open addressing schemes are fast and relatively simple
 Linear and quadratic probing can have clustering problems
 One collision means more are likely to happen

 Double hashing has poor data locality
 It is impossible to have more items than there are buckets
 Performance degrades seriously with load factors over 0.7



 Make each hash table entry a linked list
 If you want to insert something at a location, simply insert it 

into the linked list
 This is the most common kind of hash table
 Chaining can behave well even if the load factor is greater 

than 1
 Chaining is sensitive to bad hash functions
 No advantage if every item is hashed to the same location



 Deletion can be a huge problem
 Easy for chaining
 Highly non-trivial for open addressing
 Consider our linear probing example with a step size of 5

 Delete 19
 Now see if 6 exists

104 3 19 7 6 89

0 1 2 3 4 5 6 7 8 9 10 11 12



 If you know all the values you are going to see ahead of time, 
it is possible to create a minimal perfect hash function

 A minimal perfect hash function will hash every value without 
collisions and fill your hash table

 Cichelli’s method and the FHCD algorithm are two ways to do 
it

 Both are complex
 Look them up if you find yourself in this situation





 We can define a symbol table ADT with a few essential operations:
 put(Key key, Value value)

▪ Put the key-value pair into the table
 get(Key key):

▪ Retrieve the value associated with key
 delete(Key key)

▪ Remove the value associated with key
 contains(Key key)

▪ See if the table contains a key
 isEmpty()
 size()

 It's also useful to be able to iterate over all keys



public class HashTable {
private int size = 0;
private int power = 10;
private Node[] table = new Node[1 << power];

private static class Node {
public int key;
public Object value;
public Node next;

}
…

}



 Get the number of elements stored in the hash table

 Say whether or not the hash table is empty

public boolean isEmpty()

public int size()



 It's useful to have a function that finds the appropriate hash 
value

 Take the input integer and swap the low order 16 bits and the 
high order 16 bits (in case the number is small)

 Square the number
 Use shifting to get the middle power bits

private int hash(int key)





 Finish implementing hash tables
 Map in the JCF
 HashMap
 TreeMap

 Introduction to graphs



 Start Project 3
 Form teams!

 Start Assignment 4
 Keep reading 3.4
 Read 4.1
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